Last updated: 2025-04-11

Checks: 6 1

Knit directory: sapphire/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240923) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
~/sapphire/SAfrADMIX/SAfrADMIX.ped SAfrADMIX/SAfrADMIX.ped
~/sapphire/SAfrADMIX/SAfrADMIX.map SAfrADMIX/SAfrADMIX.map

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e8fdf1b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.RData
    Ignored:    analysis/.Rhistory
    Ignored:    data/.DS_Store

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/analysis1_PCAs.Rmd) and HTML (docs/analysis1_PCAs.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd e8fdf1b Lily Heald 2025-04-11 PC projections, UV data
Rmd e86fbb5 Lily Heald 2025-04-04 updated about cleaned redundant code
html e86fbb5 Lily Heald 2025-04-04 updated about cleaned redundant code
Rmd 3fff1f9 Lily Heald 2025-04-04 cleaning and climate data

file_path <- "data/serum_vit_D_study_with_lab_results.xlsx" 
data_summer <- read_excel(file_path, sheet = "ScreeningDataCollectionSummer")
data_winter <- read_excel(file_path, sheet = "ScreeningDataCollectionWinter")
data_6weeks <- read_excel(file_path, sheet = "ScreeningDataCollection6Weeks")
sun_expos <- read.csv("data/sun_expos_data/sun_expos_long.csv")
sun_expos_summer <- sun_expos[sun_expos$collection_period == 'Summer', ]
sun_expos_winter <- sun_expos[sun_expos$collection_period == 'Winter', ]
sun_expos_6Weeks <- sun_expos[sun_expos$collection_period == '6Weeks', ]
# SAfrADMIX <- read.table("~/sapphire/SAfrADMIX/SAfrADMIX.ped")
# SAfrADMIXm <- read.table("~/sapphire/SAfrADMIX/SAfrADMIX.map")

part 0: cleaning

summer_data <- left_join(data_summer, sun_expos_summer, 
                     by = c("ParticipantCentreID" = "participant_centre_id"))

winter_data <- left_join(data_winter, sun_expos_winter, 
                     by = c("ParticipantCentreID" = "participant_centre_id"))

six_week_data <- left_join(data_6weeks, sun_expos_6Weeks, 
                     by = c("ParticipantCentreID" = "participant_centre_id"))
summer_data = subset(summer_data, select = -c(Supplements, Medications, 
                                              EthnicitySpecifyOther, SmokingComments,
                                              x9if_apply_sunscreen_spf_used))
winter_data = subset(winter_data, select = -c(Supplements, Medications, 
                                              EthnicitySpecifyOther, SmokingComments, 
                                              ContinuedInStudy, IfNotContinuedInStudyReason,
                                              x9if_apply_sunscreen_spf_used))
six_week_data = subset(six_week_data, select = -c(Supplements, Medications, 
                                              EthnicitySpecifyOther, SmokingComments, 
                                              ContinuedInStudy, IfNotContinuedInStudyReason,
                                              x9if_apply_sunscreen_spf_used))
six_week_data = six_week_data[,!grepl("IfNoReasonForExclusion:",names(six_week_data))]
winter_data = winter_data[,!grepl("IfNoReasonForExclusion:",names(winter_data))]
summer_data = summer_data[,!grepl("IfNoReasonForExclusion:",names(summer_data))]
six_week_data = six_week_data[,!grepl("Req Num",names(six_week_data))]
winter_data = winter_data[,!grepl("Req Num",names(winter_data))]
summer_data = summer_data[,!grepl("Req Num",names(summer_data))]
# taking the median of three measurements
sites <- c("Forehead", "RightUpperInnerArm", "LeftUpperInnerArm")
metrics <- c("E", "M", "R", "G", "B", "L\\*", "a\\*", "b\\*")
seasons <- c("six_week_data", "summer_data", "winter_data")

for(site in sites) {
  for(metric in metrics) {
    six_week_data <- six_week_data %>%
      rowwise() %>%
      mutate(!!paste0("Median", site, metric) := median(c_across(matches(paste0("SkinReflectance", site, metric, "[123]"))), na.rm = TRUE)) %>%
      ungroup()
  }
}

for(site in sites) {
  for(metric in metrics) {
    summer_data <- summer_data %>%
      rowwise() %>%
      mutate(!!paste0("Median", site, metric) := median(c_across(matches(paste0("SkinReflectance", site, metric, "[123]"))), na.rm = TRUE)) %>%
      ungroup()
  }
}

for(site in sites) {
  for(metric in metrics) {
    winter_data <- winter_data %>%
      rowwise() %>%
      mutate(!!paste0("Median", site, metric) := median(c_across(matches(paste0("SkinReflectance", site, metric, "[123]"))), na.rm = TRUE)) %>%
      ungroup()
  }
}

winter_data <- winter_data %>%
  select(-matches(".*[EMRGBL\\*a\\*b\\*]\\d$"))

summer_data <- summer_data %>%
  select(-matches(".*[EMRGBL\\*a\\*b\\*]\\d$"))

six_week_data <- six_week_data %>%
  select(-matches(".*[EMRGBL\\*a\\*b\\*]\\d$"))
ethnicity <- function(EthnicityAfricanBlack, EthnicityColoured, EthnicityWhite, 
                      EthnicityIndianAsian) {
  case_when(
    EthnicityAfricanBlack == TRUE & 
      EthnicityColoured == FALSE & 
      EthnicityWhite == FALSE & 
      EthnicityIndianAsian == FALSE ~ "Xhosa",
    EthnicityAfricanBlack == FALSE & 
      EthnicityColoured == TRUE & 
      EthnicityWhite == FALSE & 
      EthnicityIndianAsian == FALSE ~ "Cape_colored",
    TRUE ~ NA_character_
  )
}

summer_data <- summer_data %>%
  mutate(Ethnicity = ethnicity(EthnicityAfricanBlack, EthnicityColoured, 
                               EthnicityWhite, EthnicityIndianAsian))
summer_data = subset(summer_data, select = -c(EthnicityAfricanBlack, 
                                               EthnicityColoured, EthnicityWhite, 
                                               EthnicityIndianAsian))

winter_data <- winter_data %>%
  mutate(Ethnicity = ethnicity(EthnicityAfricanBlack, EthnicityColoured, 
                               EthnicityWhite, EthnicityIndianAsian))
winter_data = subset(winter_data, select = -c(EthnicityAfricanBlack, 
                                               EthnicityColoured, EthnicityWhite, 
                                               EthnicityIndianAsian))

six_week_data <- six_week_data %>%
  mutate(Ethnicity = ethnicity(EthnicityAfricanBlack, EthnicityColoured, 
                               EthnicityWhite, EthnicityIndianAsian))
six_week_data = subset(six_week_data, select = -c(EthnicityAfricanBlack, 
                                               EthnicityColoured, EthnicityWhite, 
                                               EthnicityIndianAsian))
# mean left and right inner arm
for (metric in metrics) {
  summer_data <- summer_data %>%
    mutate(!!paste0("MedianInnerArm", metric) := rowMeans(
      select(., starts_with(paste0("MedianLeftInnerArm", metric)),
                 starts_with(paste0("MedianRightUpperInnerArm", metric))),
      na.rm = TRUE
    ))
}

for (metric in metrics) {
  winter_data <- winter_data %>%
    mutate(!!paste0("MedianInnerArm", metric) := rowMeans(
      select(., starts_with(paste0("MedianLeftInnerArm", metric)),
                 starts_with(paste0("MedianRightUpperInnerArm", metric))),
      na.rm = TRUE
    ))
}

for (metric in metrics) {
  six_week_data <- six_week_data %>%
    mutate(!!paste0("MedianInnerArm", metric) := rowMeans(
      select(., starts_with(paste0("MedianLeftInnerArm", metric)),
                 starts_with(paste0("MedianRightUpperInnerArm", metric))),
      na.rm = TRUE
    ))
}

winter_data <- winter_data %>%
  select(-matches("Left|Right"))

summer_data <- summer_data %>%
  select(-matches("Left|Right"))

six_week_data <- six_week_data %>%
  select(-matches("Left|Right"))
for (metric in metrics) {
  six_week_data <- six_week_data %>%
    mutate(!!paste0(metric, "Difference") :=
             .[[paste0("MedianForehead", metric)]] -
             .[[paste0("MedianInnerArm", metric)]])
}

for (metric in metrics) {
  summer_data <- summer_data %>%
    mutate(!!paste0(metric, "Difference") :=
             .[[paste0("MedianForehead", metric)]] -
             .[[paste0("MedianInnerArm", metric)]])
}

for (metric in metrics) {
  winter_data <- winter_data %>%
    mutate(!!paste0(metric, "Difference") :=
             .[[paste0("MedianForehead", metric)]] -
             .[[paste0("MedianInnerArm", metric)]])
}
ggplot(six_week_data, aes(x = VitDResult, y = MedianForeheadM, color = Ethnicity)) +
  geom_jitter() +
  theme(legend.position = "right")
Warning: Removed 1 row containing missing values or values outside the scale range
(`geom_point()`).

Version Author Date
e86fbb5 Lily Heald 2025-04-04
ggplot(six_week_data, aes(x = Ethnicity, y = MedianForeheadM, color = Ethnicity, fill = Ethnicity)) + 
  geom_violin()

Version Author Date
e86fbb5 Lily Heald 2025-04-04
ggplot(summer_data, aes(x = VitDResult, y = MedianForeheadM, color = Ethnicity)) +
  geom_jitter() +
  theme(legend.position = "right")
Warning: Removed 1 row containing missing values or values outside the scale range
(`geom_point()`).

Version Author Date
e86fbb5 Lily Heald 2025-04-04
ggplot(summer_data, aes(x = Ethnicity, y = MedianForeheadM, color = Ethnicity, fill = Ethnicity)) + 
  geom_boxplot()

Version Author Date
e86fbb5 Lily Heald 2025-04-04
# there are still outliers even when taking the median
sites <- c("Forehead", "InnerArm")
for(site in sites) {
  for(metric in metrics) {
    column_name <- paste0("Median", site, metric)
    iqr <- IQR(winter_data[[column_name]], na.rm = TRUE)
    Q <- quantile(winter_data[[column_name]], probs = c(0.25, 0.75), na.rm = TRUE)
    up <- Q[2] + 1.5 * iqr
    low <- Q[1] - 1.5 * iqr
    winter_data <- winter_data %>%
      filter(!!sym(column_name) > low & !!sym(column_name) < up)
  }
}

for(site in sites) {
  for(metric in metrics) {
    column_name <- paste0("Median", site, metric)
    iqr <- IQR(summer_data[[column_name]], na.rm = TRUE)
    Q <- quantile(summer_data[[column_name]], probs = c(0.25, 0.75), na.rm = TRUE)
    up <- Q[2] + 1.5 * iqr
    low <- Q[1] - 1.5 * iqr
    summer_data <- summer_data %>%
      filter(!!sym(column_name) > low & !!sym(column_name) < up)
  }
}

for(site in sites) {
  for(metric in metrics) {
    column_name <- paste0("Median", site, metric)
    iqr <- IQR(winter_data[[column_name]], na.rm = TRUE)
    Q <- quantile(winter_data[[column_name]], probs = c(0.25, 0.75), na.rm = TRUE)
    up <- Q[2] + 1.5 * iqr
    low <- Q[1] - 1.5 * iqr
    six_week_data <- six_week_data %>%
      filter(!!sym(column_name) > low & !!sym(column_name) < up)
  }
}
ggplot(six_week_data, aes(x = VitDResult, y = MedianForeheadM, color = Ethnicity)) +
  geom_jitter() +
  theme(legend.position = "right")
Warning: Removed 1 row containing missing values or values outside the scale range
(`geom_point()`).

Version Author Date
e86fbb5 Lily Heald 2025-04-04
ggplot(six_week_data, aes(x = Ethnicity, y = MedianForeheadM, color = Ethnicity, fill = Ethnicity)) + 
  geom_violin()

Version Author Date
e86fbb5 Lily Heald 2025-04-04
ggplot(summer_data, aes(x = VitDResult, y = MedianForeheadM, color = Ethnicity)) +
  geom_jitter() +
  theme(legend.position = "right")
Warning: Removed 1 row containing missing values or values outside the scale range
(`geom_point()`).

Version Author Date
e86fbb5 Lily Heald 2025-04-04
ggplot(summer_data, aes(x = Ethnicity, y = MedianForeheadM, color = Ethnicity, fill = Ethnicity)) + 
  geom_boxplot()

Version Author Date
e86fbb5 Lily Heald 2025-04-04
six_week_rename <- six_week_data %>%
    rename_with(~ paste0(., "-6weeks"), -ParticipantCentreID)

joinone <- left_join(summer_data, winter_data, 
                     by = "ParticipantCentreID", 
                     suffix = c("-summer", "-winter"))

joined_data <- left_join(joinone, six_week_rename, 
                         by = "ParticipantCentreID")

head(joined_data)
# A tibble: 6 × 256
  ParticipantCentreID `InterviewerName-summer` `TodayDate-summer` 
  <chr>               <chr>                    <dttm>             
1 VDKH001             Betty                    2013-02-11 00:00:00
2 VDKH002             Betty                    2013-02-11 00:00:00
3 VDKH003             Betty                    2013-02-11 00:00:00
4 VDKH004             Betty                    2013-02-12 00:00:00
5 VDKH005             Betty                    2013-02-12 00:00:00
6 VDKH006             Betty                    2013-02-12 00:00:00
# ℹ 253 more variables: `AgeYears-summer` <dbl>, `DateOfBirth-summer` <dttm>,
#   `Gender-summer` <dbl>, `EthnicityOther-summer` <lgl>,
#   `Ethnicity-summer` <chr>, `RefuseToAnswer-summer` <lgl>,
#   `AvgWeight-summer` <dbl>, `AvgHeight-summer` <dbl>, `BMI-summer` <dbl>,
#   `SoreThroatYes-summer` <lgl>, `SoreThroatNo-summer` <lgl>,
#   `RunnyNoseYes-summer` <lgl>, `RunnyNoseNo-summer` <lgl>,
#   `CoughYes-summer` <lgl>, `CoughNo-summer` <lgl>, `FeverYes-summer` <lgl>, …
#join into pheno_dat
six_week_rename <- six_week_data %>%
    rename_with(~ paste0(., "-6weeks"), -ParticipantCentreID)

phenojoinone <- left_join(summer_data, winter_data, 
                     by = "ParticipantCentreID", 
                     suffix = c("-summer", "-winter"))

pheno_dat <- left_join(phenojoinone, six_week_rename, 
                         by = "ParticipantCentreID")

# create tanning columns
pheno_dat <- pheno_dat %>%
  mutate(tanning = coalesce(`MDifference-summer` - `MDifference-winter`, 0),
         foreheadtanning = coalesce(`MedianForeheadM-summer` - `MedianForeheadM-winter`, 0))

#change ParticipantCentreID to IID
pheno_dat$ParticipantCentreID <- gsub("([A-Z]{4})0([0-9]{2})", "\\1\\2", pheno_dat$ParticipantCentreID)
names(pheno_dat)[names(pheno_dat) == "ParticipantCentreID"] <- "IID"
pheno_dat$IID <- gsub("VDKH([0-9]+)", "VDKHS\\1", pheno_dat$IID)

#subset by phenotype data
pheno_dat <- pheno_dat %>%
  select(matches("MedianForehead|InnerArm|Difference|tanning|VitD|IID"))

#Create FID
pheno_dat <- pheno_dat %>%
  mutate(FID = case_when(
    grepl("^VDTG", IID) ~ gsub("^VDTG", "CM", IID),
    grepl("^VDKHS", IID) ~ gsub("^VDKHS", "XH", IID),
    TRUE ~ IID))

# move FID to first column to match format
pheno_dat <- pheno_dat %>%
  select("FID", everything()) 
tanning_data <- pheno_dat %>%
  select(c("FID", "IID", "foreheadtanning"))

part 1: PCAs

PCAs to run: - run wideform pca - run pigmentation subset pca for each season - run RGB subset for each season - run ME subset for each season - run CIElab subset for each season

wideform

summer_winter <- left_join(summer_data, winter_data, 
                     by = "ParticipantCentreID", 
                     suffix = c("-summer", "-winter"))
summer_winter_clean <- na.omit(summer_winter)
reflectance_metrics_ws <- summer_winter_clean %>%
  select(matches("MedianForehead|InnerArm"))
reflectance_metrics_ws
# A tibble: 62 × 32
   `MedianForeheadE-summer` `MedianForeheadM-summer` `MedianForeheadR-summer`
                      <dbl>                    <dbl>                    <dbl>
 1                     18.6                     70.6                       50
 2                     17.4                     74.7                       45
 3                     14.3                     69.6                       51
 4                     19.7                     63.0                       57
 5                     15.3                     82.1                       38
 6                     23.8                     69.0                       51
 7                     18.9                     59.3                       66
 8                     18.6                     64.6                       59
 9                     18.3                     79.8                       39
10                     15.5                     75.0                       44
# ℹ 52 more rows
# ℹ 29 more variables: `MedianForeheadG-summer` <dbl>,
#   `MedianForeheadB-summer` <dbl>, `MedianForeheadL\\*-summer` <dbl>,
#   `MedianForeheada\\*-summer` <dbl>, `MedianForeheadb\\*-summer` <dbl>,
#   `MedianInnerArmE-summer` <dbl>, `MedianInnerArmM-summer` <dbl>,
#   `MedianInnerArmR-summer` <dbl>, `MedianInnerArmG-summer` <dbl>,
#   `MedianInnerArmB-summer` <dbl>, `MedianInnerArmL\\*-summer` <dbl>, …
reflectance3 <- scale(reflectance_metrics_ws)
reflectancepcaws <- prcomp(reflectance3)
summary(reflectancepcaws)
Importance of components:
                          PC1     PC2     PC3     PC4     PC5     PC6     PC7
Standard deviation     4.8708 1.76349 1.30313 0.98821 0.75880 0.72092 0.68732
Proportion of Variance 0.7414 0.09718 0.05307 0.03052 0.01799 0.01624 0.01476
Cumulative Proportion  0.7414 0.83857 0.89163 0.92215 0.94014 0.95639 0.97115
                           PC8     PC9    PC10    PC11    PC12    PC13    PC14
Standard deviation     0.53700 0.44642 0.39456 0.27647 0.21339 0.18908 0.16793
Proportion of Variance 0.00901 0.00623 0.00486 0.00239 0.00142 0.00112 0.00088
Cumulative Proportion  0.98016 0.98639 0.99125 0.99364 0.99506 0.99618 0.99706
                          PC15    PC16    PC17    PC18    PC19    PC20    PC21
Standard deviation     0.15503 0.13513 0.11606 0.09057 0.08605 0.07618 0.06043
Proportion of Variance 0.00075 0.00057 0.00042 0.00026 0.00023 0.00018 0.00011
Cumulative Proportion  0.99781 0.99838 0.99881 0.99906 0.99929 0.99947 0.99959
                         PC22    PC23    PC24    PC25    PC26    PC27    PC28
Standard deviation     0.0575 0.04986 0.04625 0.03954 0.03070 0.02852 0.02518
Proportion of Variance 0.0001 0.00008 0.00007 0.00005 0.00003 0.00003 0.00002
Cumulative Proportion  0.9997 0.99977 0.99984 0.99989 0.99991 0.99994 0.99996
                          PC29    PC30    PC31     PC32
Standard deviation     0.02232 0.01997 0.01714 0.009283
Proportion of Variance 0.00002 0.00001 0.00001 0.000000
Cumulative Proportion  0.99998 0.99999 1.00000 1.000000
reflectancepcaws$loadings[, 1:2]
NULL
fviz_eig(reflectancepcaws, addlabels = TRUE)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_pca_var(reflectancepcaws, col.var = "black")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_cos2(reflectancepcaws, choice = "var", axes = 1:2)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
wscomps <- as.data.frame(reflectancepcaws$x)
reflectance_ws <- cbind(summer_winter_clean,wscomps[,c(1,2)])
reflectance_ws <- reflectance_ws %>%
  select(-matches("SkinReflectance"))
reflectance_ws <- reflectance_ws %>%
  select(-"Ethnicity-winter")
names(reflectance_ws)[names(reflectance_ws) == 'Ethnicity-summer'] <- 'Ethnicity'


ggplot(reflectance_ws, aes(x=PC1, y=PC2, col = Ethnicity, fill = Ethnicity)) +
  stat_ellipse(geom = "polygon", col= "black", alpha =0.5)+
  geom_point(shape=21, col="black") +
  labs(title = "Wide Pigmentation PCA")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(reflectancepcaws, choice = "var", axes = 1, top = 20)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(reflectancepcaws, choice = "var", axes = 2, top = 20)

Version Author Date
e86fbb5 Lily Heald 2025-04-04

pigmentation subset

summer_refl_metrics <- summer_data %>%
  select(matches("InnerArm|MedianForehead"))
summer_refl_metrics <- na.omit(summer_refl_metrics)

winter_refl_metrics <- winter_data %>%
  select(matches("InnerArm|MedianForehead"))
winter_refl_metrics <- na.omit(winter_refl_metrics)

six_refl_metrics <- six_week_data %>%
  select(matches("InnerArm|MedianForehead"))
six_refl_metrics <- na.omit(six_refl_metrics)
six_refl <- scale(six_refl_metrics)
six_refl_pca <- prcomp(six_refl)
summary(six_refl_pca)
Importance of components:
                          PC1    PC2     PC3     PC4     PC5     PC6     PC7
Standard deviation     3.2964 1.5335 1.08843 0.95116 0.51710 0.41484 0.35240
Proportion of Variance 0.6792 0.1470 0.07404 0.05654 0.01671 0.01076 0.00776
Cumulative Proportion  0.6792 0.8261 0.90017 0.95672 0.97343 0.98419 0.99195
                           PC8     PC9    PC10    PC11    PC12    PC13    PC14
Standard deviation     0.22910 0.18667 0.12819 0.09787 0.08233 0.06270 0.04608
Proportion of Variance 0.00328 0.00218 0.00103 0.00060 0.00042 0.00025 0.00013
Cumulative Proportion  0.99523 0.99741 0.99843 0.99903 0.99945 0.99970 0.99983
                          PC15    PC16
Standard deviation     0.04018 0.03245
Proportion of Variance 0.00010 0.00007
Cumulative Proportion  0.99993 1.00000
six_refl_pca$loadings[, 1:2]
NULL
fviz_eig(six_refl_pca, addlabels = TRUE)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_pca_var(six_refl_pca, col.var = "black")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_cos2(six_refl_pca, choice = "var", axes = 1:2)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
six_pigm_comps <- as.data.frame(six_refl_pca$x)
six_pigment <- cbind(six_week_data,six_pigm_comps[,c(1,2)])

ggplot(six_pigment, aes(x=PC1, y=PC2, col = Ethnicity, fill = Ethnicity)) +
  stat_ellipse(geom = "polygon", col= "black", alpha =0.5)+
  geom_point(shape=21, col="black") +
  labs(title = "Six Week Pigmentation PCA")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(six_refl_pca, choice = "var", axes = 1, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(six_refl_pca, choice = "var", axes = 2, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
summer_refl <- scale(summer_refl_metrics)
summer_refl_pca <- prcomp(summer_refl)
summary(summer_refl_pca)
Importance of components:
                          PC1    PC2     PC3     PC4     PC5     PC6     PC7
Standard deviation     3.4440 1.2656 1.16829 0.77092 0.57471 0.34227 0.21398
Proportion of Variance 0.7413 0.1001 0.08531 0.03714 0.02064 0.00732 0.00286
Cumulative Proportion  0.7413 0.8414 0.92673 0.96387 0.98451 0.99184 0.99470
                           PC8     PC9    PC10    PC11    PC12    PC13    PC14
Standard deviation     0.17570 0.13639 0.10998 0.09641 0.08085 0.06305 0.04166
Proportion of Variance 0.00193 0.00116 0.00076 0.00058 0.00041 0.00025 0.00011
Cumulative Proportion  0.99663 0.99779 0.99855 0.99913 0.99954 0.99978 0.99989
                          PC15    PC16
Standard deviation     0.03153 0.02710
Proportion of Variance 0.00006 0.00005
Cumulative Proportion  0.99995 1.00000
summer_refl_pca$loadings[, 1:2]
NULL
fviz_eig(summer_refl_pca, addlabels = TRUE)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_pca_var(summer_refl_pca, col.var = "black")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_cos2(summer_refl_pca, choice = "var", axes = 1:2)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
summer_pigm_comps <- as.data.frame(summer_refl_pca$x)
summer_pigment <- cbind(summer_data,summer_pigm_comps[,c(1,2)])

ggplot(summer_pigment, aes(x=PC1, y=PC2, col = Ethnicity, fill = Ethnicity)) +
  stat_ellipse(geom = "polygon", col= "black", alpha =0.5)+
  geom_point(shape=21, col="black") +
  labs(title = "Summer Pigmentation PCA")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(summer_refl_pca, choice = "var", axes = 1, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(summer_refl_pca, choice = "var", axes = 2, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
winter_refl <- scale(winter_refl_metrics)
winter_refl_pca <- prcomp(winter_refl)
summary(winter_refl_pca)
Importance of components:
                          PC1    PC2     PC3     PC4     PC5     PC6     PC7
Standard deviation     3.5551 1.3839 0.80737 0.64068 0.48775 0.26632 0.15397
Proportion of Variance 0.7899 0.1197 0.04074 0.02565 0.01487 0.00443 0.00148
Cumulative Proportion  0.7899 0.9096 0.95038 0.97603 0.99090 0.99534 0.99682
                           PC8     PC9    PC10    PC11    PC12    PC13    PC14
Standard deviation     0.14316 0.12764 0.07986 0.06160 0.03646 0.03546 0.02830
Proportion of Variance 0.00128 0.00102 0.00040 0.00024 0.00008 0.00008 0.00005
Cumulative Proportion  0.99810 0.99912 0.99952 0.99975 0.99984 0.99991 0.99996
                          PC15    PC16
Standard deviation     0.01758 0.01615
Proportion of Variance 0.00002 0.00002
Cumulative Proportion  0.99998 1.00000
winter_refl_pca$loadings[, 1:2]
NULL
fviz_eig(winter_refl_pca, addlabels = TRUE)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_pca_var(winter_refl_pca, col.var = "black")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_cos2(winter_refl_pca, choice = "var", axes = 1:2)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
winter_pigm_comps <- as.data.frame(winter_refl_pca$x)
winter_pigment <- cbind(winter_data,winter_pigm_comps[,c(1,2)])

ggplot(winter_pigment, aes(x=PC1, y=PC2, col = Ethnicity, fill = Ethnicity)) +
  stat_ellipse(geom = "polygon", col= "black", alpha =0.5)+
  geom_point(shape=21, col="black") +
  labs(title = "Winter Pigmentation PCA")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(winter_refl_pca, choice = "var", axes = 1, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(winter_refl_pca, choice = "var", axes = 2, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04

RGB subset

summer_winter_clean <- na.omit(summer_winter)
reflectance_rgb_ws <- summer_winter_clean %>%
  select(matches("MedianForeheadR|MedianForeheadG|MedianForeheadB|InnerArmR|InnerArmG|InnerArmB", ignore.case = FALSE))

reflectance4 <- scale(reflectance_rgb_ws)
reflectancergbws <- prcomp(reflectance4)
summary(reflectancergbws)
Importance of components:
                          PC1    PC2     PC3    PC4     PC5     PC6     PC7
Standard deviation     3.2234 0.9250 0.64032 0.4749 0.23334 0.17127 0.11920
Proportion of Variance 0.8658 0.0713 0.03417 0.0188 0.00454 0.00244 0.00118
Cumulative Proportion  0.8658 0.9371 0.97131 0.9901 0.99464 0.99709 0.99827
                           PC8     PC9    PC10    PC11    PC12
Standard deviation     0.08932 0.07877 0.06799 0.03813 0.02223
Proportion of Variance 0.00066 0.00052 0.00039 0.00012 0.00004
Cumulative Proportion  0.99894 0.99945 0.99984 0.99996 1.00000
reflectancergbws$loadings[, 1:2]
NULL
fviz_eig(reflectancergbws, addlabels = TRUE)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_pca_var(reflectancergbws, col.var = "black")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_cos2(reflectancergbws, choice = "var", axes = 1:2)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
wsrgbcomps <- as.data.frame(reflectancergbws$x)
rgb_ws_bind <- cbind(summer_winter_clean,wsrgbcomps[,c(1,2)])
rgb_ws_bind <- rgb_ws_bind %>%
  select(-matches("SkinReflectance"))
rgb_ws_bind <- rgb_ws_bind %>%
  select(-"Ethnicity-winter")
names(rgb_ws_bind)[names(rgb_ws_bind) == 'Ethnicity-summer'] <- 'Ethnicity'


ggplot(rgb_ws_bind, aes(x=PC1, y=PC2, col = Ethnicity, fill = Ethnicity)) +
  stat_ellipse(geom = "polygon", col= "black", alpha =0.5)+
  geom_point(shape=21, col="black") +
  labs(title = "Wide Pigmentation PCA")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(reflectancergbws, choice = "var", axes = 1, top = 20)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(reflectancergbws, choice = "var", axes = 2, top = 20)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
summer_rgb <- summer_data %>%
  select(matches("ForeheadR|ForeheadG|ForeheadB|InnerArmR|InnerArmG|InnerArmB", ignore.case = FALSE))
summer_rgb <- na.omit(summer_rgb)

winter_rgb <- winter_data %>%
  select(matches("ForeheadR|ForeheadG|ForeheadB|InnerArmR|InnerArmG|InnerArmB", ignore.case = FALSE))
winter_rgb <- na.omit(winter_rgb)

six_rgb <- six_week_data %>%
  select(matches("ForeheadR|ForeheadG|ForeheadB|InnerArmR|InnerArmG|InnerArmB", ignore.case = FALSE))
six_rgb <- na.omit(six_rgb)
winter_rgb_scale <- scale(winter_rgb)
winter_rgb_pca <- prcomp(winter_rgb_scale)
summary(winter_rgb_pca)
Importance of components:
                          PC1     PC2     PC3     PC4     PC5     PC6
Standard deviation     2.3720 0.58112 0.15130 0.08075 0.07684 0.01941
Proportion of Variance 0.9378 0.05628 0.00382 0.00109 0.00098 0.00006
Cumulative Proportion  0.9378 0.99405 0.99787 0.99895 0.99994 1.00000
winter_rgb_pca$loadings[, 1:2]
NULL
fviz_eig(winter_rgb_pca, addlabels = TRUE)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_pca_var(winter_rgb_pca, col.var = "black")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_cos2(winter_rgb_pca, choice = "var", axes = 1:2)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
winter_rgb_comps <- as.data.frame(winter_rgb_pca$x)
winter_rgb_new <- cbind(winter_data,winter_rgb_comps[,c(1,2)])

ggplot(winter_rgb_new, aes(x=PC1, y=PC2, col = Ethnicity, fill = Ethnicity)) +
  stat_ellipse(geom = "polygon", col= "black", alpha =0.5)+
  geom_point(shape=21, col="black") +
  labs(title = "Winter RGB PCA")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(winter_rgb_pca, choice = "var", axes = 1, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(winter_rgb_pca, choice = "var", axes = 2, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
summer_rgb_scale <- scale(summer_rgb)
summer_rgb_pca <- prcomp(summer_rgb_scale)
summary(summer_rgb_pca)
Importance of components:
                         PC1    PC2     PC3     PC4    PC5     PC6
Standard deviation     2.286 0.8242 0.23805 0.15859 0.1067 0.04116
Proportion of Variance 0.871 0.1132 0.00944 0.00419 0.0019 0.00028
Cumulative Proportion  0.871 0.9842 0.99363 0.99782 0.9997 1.00000
summer_rgb_pca$loadings[, 1:2]
NULL
fviz_eig(summer_rgb_pca, addlabels = TRUE)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_pca_var(summer_rgb_pca, col.var = "black")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_cos2(summer_rgb_pca, choice = "var", axes = 1:2)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
summer_rgb_comps <- as.data.frame(summer_rgb_pca$x)
summer_rgb_new <- cbind(summer_data,summer_rgb_comps[,c(1,2)])

ggplot(summer_rgb_new, aes(x=PC1, y=PC2, col = Ethnicity, fill = Ethnicity)) +
  stat_ellipse(geom = "polygon", col= "black", alpha =0.5)+
  geom_point(shape=21, col="black") +
  labs(title = "Summer RGB PCA")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(summer_rgb_pca, choice = "var", axes = 1, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(summer_rgb_pca, choice = "var", axes = 2, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
six_rgb_scale <- scale(six_rgb)
six_rgb_pca <- prcomp(six_rgb_scale)
summary(six_rgb_pca)
Importance of components:
                          PC1    PC2     PC3     PC4     PC5     PC6
Standard deviation     2.2119 1.0170 0.17400 0.14471 0.13214 0.06648
Proportion of Variance 0.8154 0.1724 0.00505 0.00349 0.00291 0.00074
Cumulative Proportion  0.8154 0.9878 0.99286 0.99635 0.99926 1.00000
six_rgb_pca$loadings[, 1:2]
NULL
fviz_eig(six_rgb_pca, addlabels = TRUE)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_pca_var(six_rgb_pca, col.var = "black")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_cos2(six_rgb_pca, choice = "var", axes = 1:2)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
six_rgb_comps <- as.data.frame(six_rgb_pca$x)
six_rgb_new <- cbind(six_week_data,six_rgb_comps[,c(1,2)])

ggplot(six_rgb_new, aes(x=PC1, y=PC2, col = Ethnicity, fill = Ethnicity)) +
  stat_ellipse(geom = "polygon", col= "black", alpha =0.5)+
  geom_point(shape=21, col="black") +
  labs(title = "Six Week RGB PCA")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(six_rgb_pca, choice = "var", axes = 1, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(six_rgb_pca, choice = "var", axes = 2, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04

CIElab subset

summer_winter_clean <- na.omit(summer_winter)
reflectance_cie_ws <- summer_winter_clean %>%
  select(matches("ForeheadL|Foreheada|Foreheadb|InnerArmL|InnerArma|InnerArmb", ignore.case = FALSE))

reflectance5 <- scale(reflectance_cie_ws)
reflectanceciews <- prcomp(reflectance5)
summary(reflectanceciews)
Importance of components:
                          PC1    PC2    PC3     PC4     PC5     PC6     PC7
Standard deviation     2.9442 1.2216 0.6971 0.64830 0.56414 0.45873 0.38123
Proportion of Variance 0.7223 0.1244 0.0405 0.03502 0.02652 0.01754 0.01211
Cumulative Proportion  0.7223 0.8467 0.8872 0.92222 0.94874 0.96628 0.97839
                           PC8     PC9   PC10    PC11    PC12
Standard deviation     0.29699 0.24598 0.2298 0.17889 0.16070
Proportion of Variance 0.00735 0.00504 0.0044 0.00267 0.00215
Cumulative Proportion  0.98574 0.99078 0.9952 0.99785 1.00000
reflectanceciews$loadings[, 1:2]
NULL
fviz_eig(reflectanceciews, addlabels = TRUE)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_pca_var(reflectanceciews, col.var = "black")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_cos2(reflectanceciews, choice = "var", axes = 1:2)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
wsciecomps <- as.data.frame(reflectanceciews$x)
cie_ws_bind <- cbind(summer_winter_clean,wsciecomps[,c(1,2)])
cie_ws_bind <- rgb_ws_bind %>%
  select(-matches("SkinReflectance"))

ggplot(cie_ws_bind, aes(x=PC1, y=PC2, col = Ethnicity, fill = Ethnicity)) +
  stat_ellipse(geom = "polygon", col= "black", alpha =0.5)+
  geom_point(shape=21, col="black") +
  labs(title = "Wide Pigmentation PCA")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(reflectanceciews, choice = "var", axes = 1, top = 20)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(reflectanceciews, choice = "var", axes = 2, top = 20)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
summer_cie <- summer_data %>%
  select(matches("ForeheadL|Foreheada|Foreheadb|InnerArmL|InnerArma|InnerArmb", ignore.case = FALSE))
summer_cie <- na.omit(summer_cie)

winter_cie <- winter_data %>%
  select(matches("ForeheadL|Foreheada|Foreheadb|InnerArmL|InnerArma|InnerArmb", ignore.case = FALSE))
winter_cie <- na.omit(winter_cie)

six_cie <- six_week_data %>%
  select(matches("ForeheadL|Foreheada|Foreheadb|InnerArmL|InnerArma|InnerArmb", ignore.case = FALSE))
six_cie <- na.omit(six_cie)
winter_cie_scale <- scale(winter_cie)
winter_cie_pca <- prcomp(winter_cie_scale)
summary(winter_cie_pca)
Importance of components:
                          PC1    PC2    PC3     PC4    PC5     PC6
Standard deviation     2.1257 0.9808 0.5304 0.36540 0.2486 0.20736
Proportion of Variance 0.7531 0.1603 0.0469 0.02225 0.0103 0.00717
Cumulative Proportion  0.7531 0.9134 0.9603 0.98253 0.9928 1.00000
winter_cie_pca$loadings[, 1:2]
NULL
fviz_eig(winter_cie_pca, addlabels = TRUE)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_pca_var(winter_cie_pca, col.var = "black")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_cos2(winter_cie_pca, choice = "var", axes = 1:2)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
winter_cie_comps <- as.data.frame(winter_cie_pca$x)
winter_cie_new <- cbind(winter_data,winter_cie_comps[,c(1,2)])

ggplot(winter_cie_new, aes(x=PC1, y=PC2, col = Ethnicity, fill = Ethnicity)) +
  stat_ellipse(geom = "polygon", col= "black", alpha =0.5)+
  geom_point(shape=21, col="black") +
  labs(title = "Winter CIELAB PCA")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(winter_cie_pca, choice = "var", axes = 1, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(winter_cie_pca, choice = "var", axes = 2, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
summer_cie_scale <- scale(summer_cie)
summer_cie_pca <- prcomp(summer_cie_scale)
summary(summer_cie_pca)
Importance of components:
                          PC1    PC2     PC3     PC4     PC5     PC6
Standard deviation     2.0841 0.9045 0.60937 0.53086 0.35079 0.24908
Proportion of Variance 0.7239 0.1364 0.06189 0.04697 0.02051 0.01034
Cumulative Proportion  0.7239 0.8603 0.92218 0.96915 0.98966 1.00000
summer_cie_pca$loadings[, 1:2]
NULL
fviz_eig(summer_cie_pca, addlabels = TRUE)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_pca_var(summer_cie_pca, col.var = "black")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_cos2(summer_cie_pca, choice = "var", axes = 1:2)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
summer_cie_comps <- as.data.frame(summer_cie_pca$x)
summer_cie_new <- cbind(summer_data,summer_cie_comps[,c(1,2)])

ggplot(summer_cie_new, aes(x=PC1, y=PC2, col = Ethnicity, fill = Ethnicity)) +
  stat_ellipse(geom = "polygon", col= "black", alpha =0.5)+
  geom_point(shape=21, col="black") +
  labs(title = "Summer CIELAB PCA")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(summer_cie_pca, choice = "var", axes = 1, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(summer_cie_pca, choice = "var", axes = 2, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
six_cie_scale <- scale(six_cie)
six_cie_pca <- prcomp(six_cie_scale)
summary(six_cie_pca)
Importance of components:
                         PC1    PC2     PC3     PC4     PC5     PC6
Standard deviation     2.029 1.0710 0.59501 0.50452 0.26435 0.24181
Proportion of Variance 0.686 0.1912 0.05901 0.04242 0.01165 0.00975
Cumulative Proportion  0.686 0.8772 0.93618 0.97861 0.99025 1.00000
six_cie_pca$loadings[, 1:2]
NULL
fviz_eig(six_cie_pca, addlabels = TRUE)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_pca_var(six_cie_pca, col.var = "black")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_cos2(six_cie_pca, choice = "var", axes = 1:2)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
six_cie_comps <- as.data.frame(six_cie_pca$x)
six_cie_new <- cbind(six_week_data,six_cie_comps[,c(1,2)])

ggplot(six_rgb_new, aes(x=PC1, y=PC2, col = Ethnicity, fill = Ethnicity)) +
  stat_ellipse(geom = "polygon", col= "black", alpha =0.5)+
  geom_point(shape=21, col="black") +
  labs(title = "Six Week CIELAB PCA")

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(six_cie_pca, choice = "var", axes = 1, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04
fviz_contrib(six_cie_pca, choice = "var", axes = 2, top = 10)

Version Author Date
e86fbb5 Lily Heald 2025-04-04

sessionInfo()
R version 4.4.2 (2024-10-31)
Platform: aarch64-apple-darwin20
Running under: macOS Monterey 12.5.1

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/Detroit
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lme4_1.1-36        Matrix_1.7-2       rstatix_0.7.2      ggpubr_0.6.0      
 [5] ggfortify_0.4.17   wesanderson_0.3.7  missMDA_1.19       FactoMineR_2.11   
 [9] factoextra_1.0.7   ggcorrplot_0.1.4.1 corrr_0.4.4        readxl_1.4.3      
[13] lubridate_1.9.4    forcats_1.0.0      stringr_1.5.1      purrr_1.0.4       
[17] tibble_3.2.1       ggplot2_3.5.1      tidyverse_2.0.0    tidyr_1.3.1       
[21] dplyr_1.1.4        readr_2.1.5        workflowr_1.7.1   

loaded via a namespace (and not attached):
  [1] Rdpack_2.6.2         gridExtra_2.3        sandwich_3.1-1      
  [4] rlang_1.1.5          magrittr_2.0.3       git2r_0.35.0        
  [7] multcomp_1.4-28      compiler_4.4.2       getPass_0.2-4       
 [10] callr_3.7.6          vctrs_0.6.5          pkgconfig_2.0.3     
 [13] shape_1.4.6.1        fastmap_1.2.0        backports_1.5.0     
 [16] labeling_0.4.3       utf8_1.2.4           promises_1.3.2      
 [19] rmarkdown_2.29       tzdb_0.4.0           nloptr_2.1.1        
 [22] ps_1.9.0             xfun_0.51            glmnet_4.1-8        
 [25] jomo_2.7-6           cachem_1.1.0         jsonlite_1.9.0      
 [28] flashClust_1.01-2    later_1.4.1          pan_1.9             
 [31] broom_1.0.7          parallel_4.4.2       cluster_2.1.8       
 [34] R6_2.6.1             bslib_0.9.0          stringi_1.8.4       
 [37] car_3.1-3            rpart_4.1.24         boot_1.3-31         
 [40] jquerylib_0.1.4      cellranger_1.1.0     estimability_1.5.1  
 [43] Rcpp_1.0.14          iterators_1.0.14     knitr_1.49          
 [46] zoo_1.8-12           nnet_7.3-20          httpuv_1.6.15       
 [49] splines_4.4.2        timechange_0.3.0     tidyselect_1.2.1    
 [52] abind_1.4-8          rstudioapi_0.17.1    yaml_2.3.10         
 [55] doParallel_1.0.17    codetools_0.2-20     processx_3.8.5      
 [58] lattice_0.22-6       withr_3.0.2          coda_0.19-4.1       
 [61] evaluate_1.0.3       survival_3.8-3       pillar_1.10.1       
 [64] carData_3.0-5        mice_3.17.0          whisker_0.4.1       
 [67] DT_0.33              foreach_1.5.2        reformulas_0.4.0    
 [70] generics_0.1.3       rprojroot_2.0.4      hms_1.1.3           
 [73] munsell_0.5.1        scales_1.3.0         minqa_1.2.8         
 [76] xtable_1.8-4         leaps_3.2            glue_1.8.0          
 [79] emmeans_1.10.7       scatterplot3d_0.3-44 tools_4.4.2         
 [82] ggsignif_0.6.4       fs_1.6.5             mvtnorm_1.3-3       
 [85] grid_4.4.2           rbibutils_2.3        colorspace_2.1-1    
 [88] nlme_3.1-167         Formula_1.2-5        cli_3.6.4           
 [91] gtable_0.3.6         sass_0.4.9           digest_0.6.37       
 [94] ggrepel_0.9.6        TH.data_1.1-3        farver_2.1.2        
 [97] htmlwidgets_1.6.4    htmltools_0.5.8.1    lifecycle_1.0.4     
[100] httr_1.4.7           multcompView_0.1-10  mitml_0.4-5         
[103] MASS_7.3-64